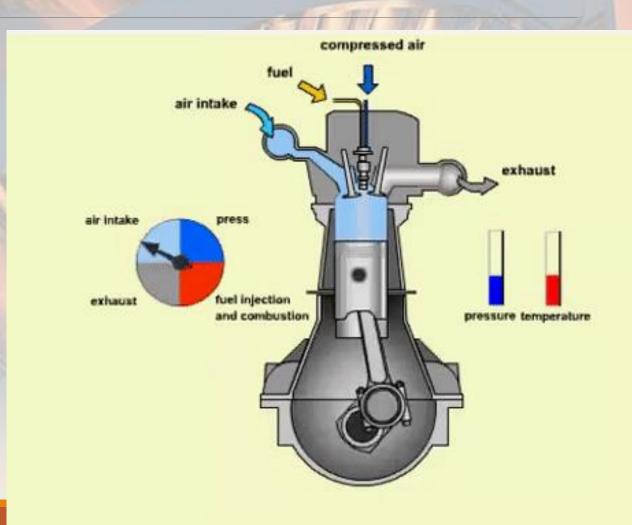
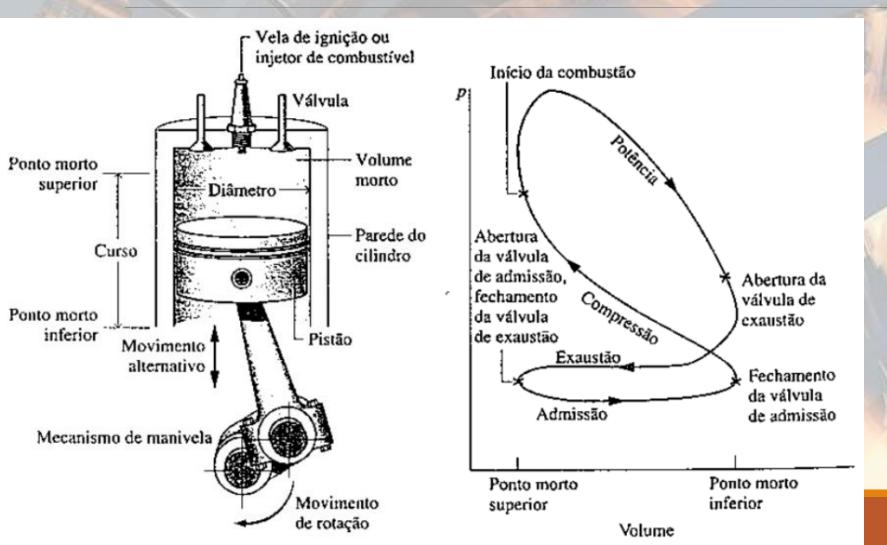
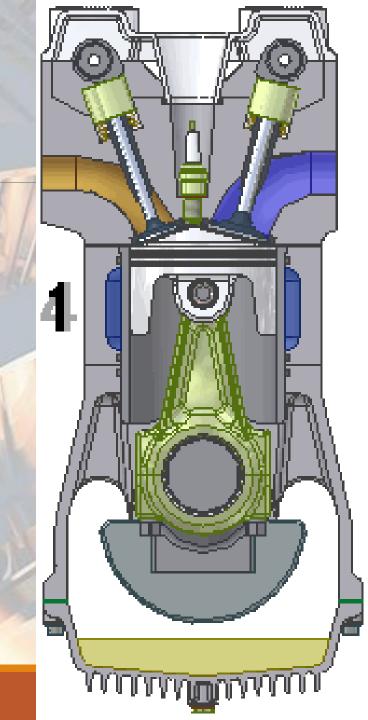



AULA 8-9 - MOTORES DE COMBUSTÃO INTERNA

PROF.: KAIO DUTRA

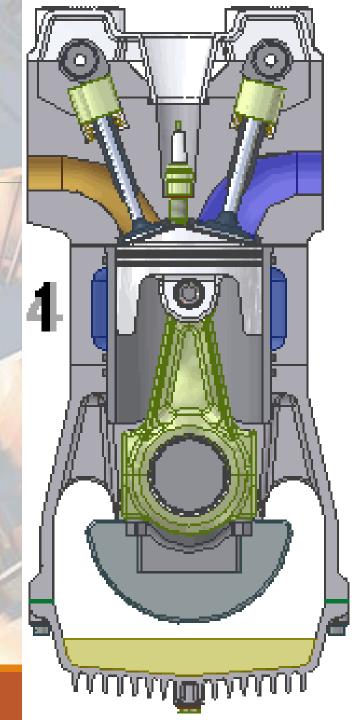

#### Motores de Combustão Interna


- Dois tipos principais de motores de combustão interna alternativos são o motor com ignição por centelha e o motor com ignição por compressão.
- Num motor com ignição por centelha, uma mistura de combustível e ar é incendiada por uma vela.

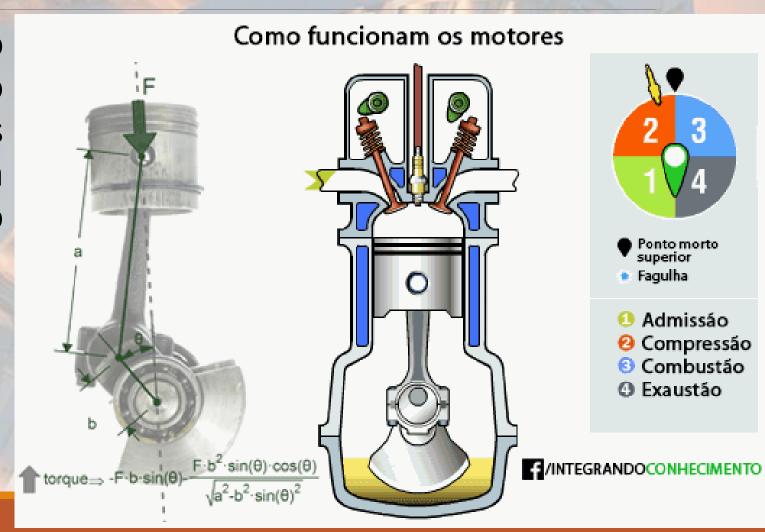



#### Motores de Combustão Interna

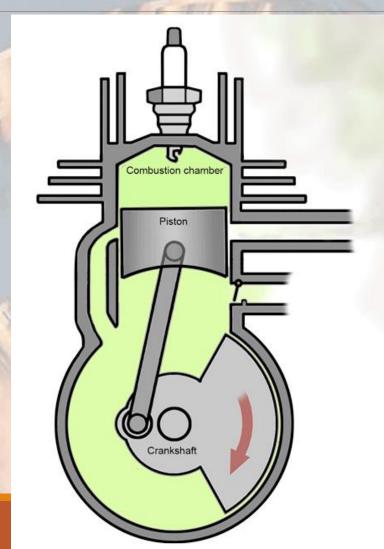
 Num motor de ignição compressão, 0 comprimido até uma pressão e temperatura elevadas suficiente para que combustão ocorra espontaneamente quando o combustível for injetado.






- Taxa de Compressão (r): É definida como o volume no PMI dividido pelo volume no PMS;
- Pressão média efetiva (pme): é a pressão constante teórica que, se atuasse no pistão durante o curso de potência, produziria o mesmo trabalho líquido que o realmente produzido em um ciclo.


pme=trabalho líquido para o ciclo/volume de deslocamento



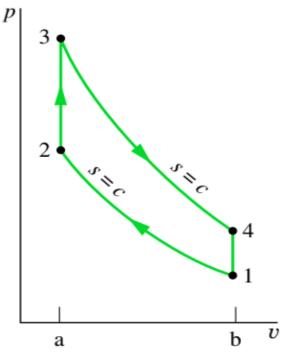
- Em um motor de combustão interna de quatro tempos, o pistão executa quatro cursos distintos do cilindro para cada duas rotações do eixo de manivelas, são estes:
  - Curso de admissão;
  - Curso de compressão;
  - Curso de potência;
  - Curso de escape.

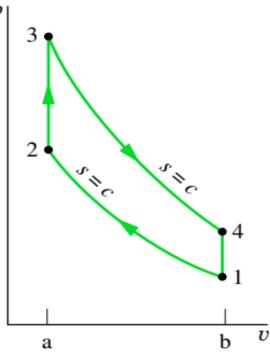


- Nos motores de dois tempos, as operações de admissão, compressão, expansão e escape são obtidas em uma volta do eixo de manivela, realizando assim:
  - Curso de admissão e compressão;
  - Curso de potência e escape.



# Terminologia de Motores Análise de Ar-Padrão


- Uma simplificação considerável é necessária para conduzir análises termodinâmicas elementares de motores de combustão interna.
- O procedimento consiste em empregar uma análise de Ar-Padrão com os seguintes elementos:
  - · Uma quantidade fixa de ar modelado como gás ideal é o fluido de trabalho;
  - O processo de combustão é substituído por uma transferência de calor de uma fonte externa.
  - Não existem os processos de admissão e descarga como no motor real.
  - Todos os processos são internamente reversíveis.


#### Ciclo de Ar-Padrão Otto

- O ciclo Otto consiste em quatro processos internamente reversíveis em série:
  - Processo 1-2: é uma compressão isentrópica do ar conforme o pistão se move do PMI para o PMS.
  - Processo 2-3: é uma transferência de calor a volume constante para o ar enquanto o pistão está no PMS.
  - Processo 3-4: é uma expansão isentrópica.

Prof.: Kaio Dutra

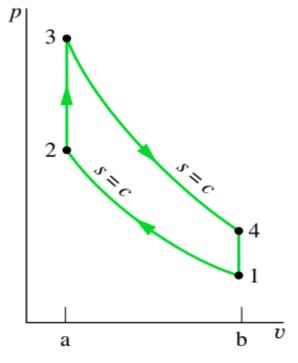
 Processo 4-1: é uma transferência de calor a volume constante no qual o calor é rejeitado do ar conforme o pistão está no PMI.

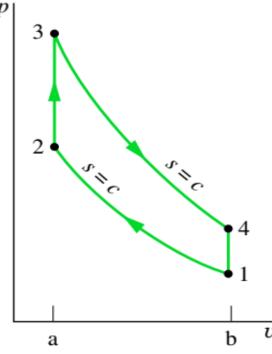




## Ciclo de Ar-Padrão Otto Análise do Ciclo

 O ciclo de ar-padrão Otto consiste em dois processos nos quais há trabalho mas não há transferência de calor, os Processos 1-2 e 3-4, e em dois processos nos quais há transferência de calor, mas não há trabalho, os Processos 2-3 e 4-1.


$$\frac{W_{12}}{m} = u_2 - u_1, \qquad \frac{W_{34}}{m} = u_3 - u_4$$


$$\frac{Q_{23}}{m} = u_3 - u_2, \qquad \frac{Q_{41}}{m} = u_4 - u_1$$

$$\frac{W_{12}}{m} = u_2 - u_1, \qquad \frac{W_{34}}{m} = u_3 - u_4 \qquad \frac{W_{\text{cycle}}}{m} = \frac{W_{34}}{m} - \frac{W_{12}}{m} = (u_3 - u_4) - (u_2 - u_1)$$

$$\frac{Q_{23}}{m} = u_3 - u_2, \qquad \frac{Q_{41}}{m} = u_4 - u_1$$

$$\eta = \frac{(u_3 - u_2) - (u_4 - u_1)}{u_3 - u_2} = 1 - \frac{u_4 - u_1}{u_3 - u_2}$$



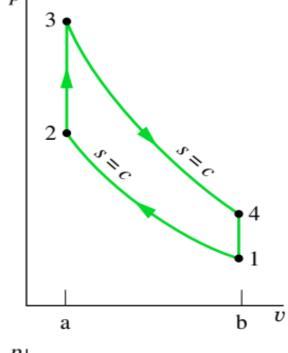


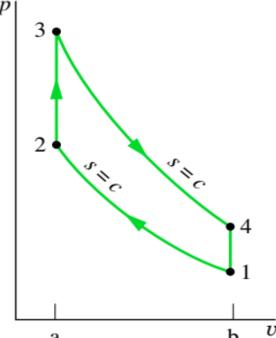
# Ciclo de Ar-Padrão Otto Efeito da Taxa de Compressão

$$\eta = \frac{(u_3 - u_2) - (u_4 - u_1)}{u_3 - u_2} = 1 - \frac{u_4 - u_1}{u_3 - u_2} \qquad \frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{k-1} = r^{k-1}$$

$$\frac{C_v(T_4 - T_1)}{T_2} = \frac{T_4}{T_3} = \left(\frac{V_3}{V_4}\right)^{k-1} = \frac{1}{r^{k-1}}$$

$$\eta = 1 - \frac{c_v(T_4 - T_1)}{c_v(T_3 - T_2)}$$

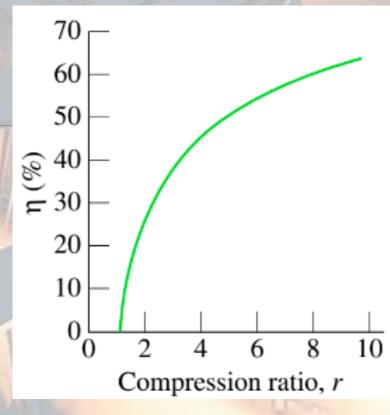

$$\eta = 1 - \frac{T_1}{T_2} \left( \frac{T_4/T_1 - 1}{T_3/T_2 - 1} \right)$$


$$\eta = 1 - \frac{T_1}{T_2}$$

$$\eta = 1 - \frac{T_1}{T_2} \qquad \eta = 1 - \frac{1}{r^{k-1}}$$

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{k-1} = r^{k-1}$$

$$\frac{T_4}{T_3} = \left(\frac{V_3}{V_4}\right)^{k-1} = \frac{1}{r^{k-1}}$$






# Ciclo de Ar-Padrão Otto Efeito da Taxa de Compressão

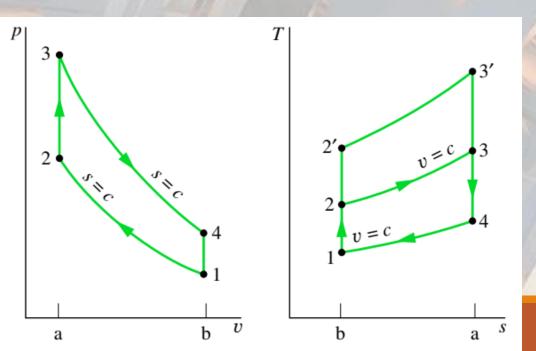
- A equação indica que a eficiência do ciclo Otto é uma função apenas da taxa de compressão.
- olsto sugere que é vantajoso para o motores Otto possuírem razões de compressão elevadas. Porém, a possibilidade de auto-ignição estabelece um limite superior para a taxa de compressão.

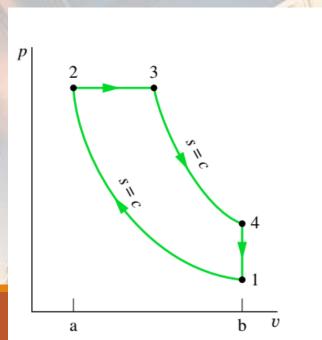
| Modelo  | Motor                       | Taxa de<br>Compressão | Fotografia | Modelo      | Motor                          | Taxa de<br>Compressão | Fotografia |
|---------|-----------------------------|-----------------------|------------|-------------|--------------------------------|-----------------------|------------|
| Ford Ka | Rocam 1.0L 8V<br>Flex       | 12,8:1                |            | Ford Fiesta | Duratec 2.0L<br>16V Flex       | 10,8:1                |            |
| Celta   | Celta 1.0 VHCE<br>Flexpower | 12,6:1                |            | ASTRA SEDÃ  | ASTRA SEDÃ<br>2.0<br>FLEXPOWER | 11,5:1                |            |

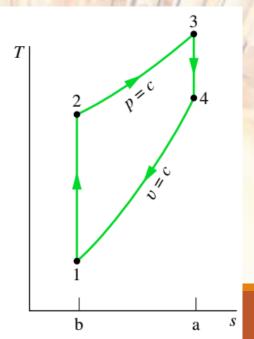


$$\eta = 1 - \frac{1}{r^{k-1}}$$

# Ciclo de Ar-Padrão Otto Exemplo 9.1

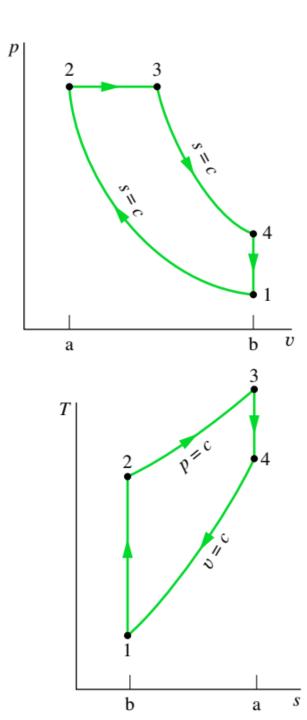

A temperatura no início do processos de compressão de um ciclo de ar-padrão Otto com uma taxa de compressão de 8 é 540°R (26,8°C) a pressão é de 1 atm e o volume do cilindro é 0,02ft³ (0,001m³) A temperatura máxima durante o ciclo é 3600°R (1726,8°C). Determine (a) temperatura e a pressão ao final de cada processo do ciclo, (b) a eficiência e (c) a pressão média efetiva.


#### Ciclo de Ar-Padrão Diesel


°O ciclo de Ar-Padrão Diesel é um ciclo ideal que considera que a adição de calor ocorre durante um processo à pressão constante, que se inicia com o pistão no PMS.

**Ciclo Otto** 

Ciclo Diesel

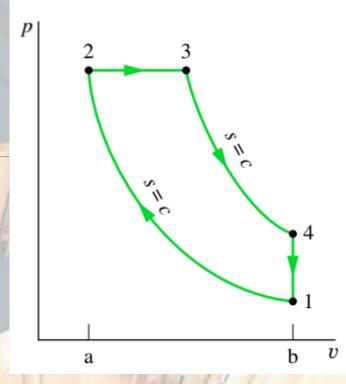







### Ciclo de Ar-Padrão Diesel

- Processos para o Ciclo Ar-Padrão Diesel:
  - Processo 1-2: Compressão isentrópica;
  - Processo 2-3: Expansão isobárica;
  - Processo 3-4: Expansão isentrópica;
  - Processo 4-1: Transferência de calor a volume constante para a fonte fria.

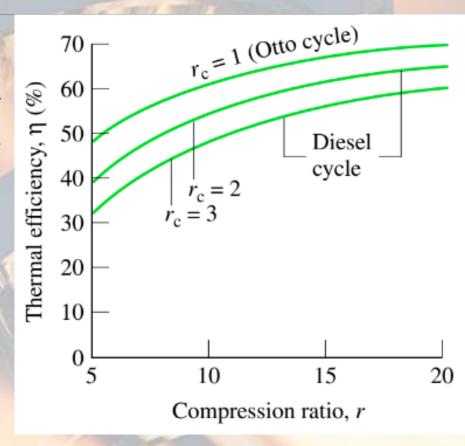



# Ciclo de Ar-Padrão Diesel Análise do Ciclo

• Para o Ciclo Ar-Padrão Diesel a eficiência fica:  $W_{\text{anale}}/m$   $Q_{\text{tr}}/m$   $U_{\text{tr}} = U_{\text{tr}}$ 

fica: 
$$\eta = \frac{W_{\text{cycle}}/m}{Q_{23}/m} = 1 - \frac{Q_{41}/m}{Q_{23}/m} = 1 - \frac{u_4 - u_1}{h_3 - h_2}$$

- Assim como no ciclo Otto, a eficiência térmica do ciclo aumenta com o aumento da taxa de compressão. Conforme a equação:
- ∘ Onde r<sub>c</sub> = V3/V2 chamado razão de corte.




$$\eta = 1 - \frac{1}{r^{k-1}} \left[ \frac{r_{\rm c}^k - 1}{k(r_{\rm c} - 1)} \right]$$

# Ciclo de Ar-Padrão Diesel Análise do Ciclo

Assim quando a taxa de compressão é a mesma, a eficiência térmica do ciclo de arpadrão frio Diesel seria menor do que aquela para o ciclo de ar-padrão frio Otto.

$$\eta = 1 - \frac{1}{r^{k-1}} \left[ \frac{r_{\rm c}^k - 1}{k(r_{\rm c} - 1)} \right]$$



# Ciclo de Ar-Padrão Otto Exemplo 9.2

No início do processo de compressão de um ciclo de ar-padrão Diesel que opere com uma taxa de compressão de 18, a temperatura é 300K e a pressão é 0,1MPa. A razão de corte é 2. Determine (a) a temperatura e a pressão ao final de cada processos do ciclo, (b) a eficiência térmica e (c) a pressão média efetiva.